Don’t worry, unlock all articles / blogs on PrepInsta by just simply logging in on our website
Type atleast 3 characters
Popular Searches
Trending Pages
Notifications Mark All Read
Test Notification
Walmart is Hiring for 2024 and 2025! Batches Click here to apply!
PREPINSTA PRIME BIG BILLION SALE is live now. Go and grab the amazing offer.
asdasd
You have purchased Zoho Prime Mock Materials go to My Orders
You have purchased CTS Prime Mock Material. go to My Orders
Quants Menu9>
PREPINSTA PRIME
Get Hiring Updates right in your inbox from PrepInsta
August 12, 2023
In this Page Harmonic Progression Formulas is given that is useful to Solve many problems in different Competitive Examinations.
Harmonic Progression:A sequence is a harmonic progression when each term is the harmonic mean of its Neighboring term.
Harmonic Progression is a Sequence of quantities whose reciprocals are in Arithmetical progression. We have Limited Harmonic progression Formulas .Each term in the Harmonic Progression is the Harmonic Mean of its Neighboring Term. Hence, it is is a sequence of real numbers formed by taking the reciprocals of an Arithmetic progression. mean of its two neighbors.
HP is Represented in the form of \mathbf{\frac{1}{a_{1}} , \frac{1}{a_{2}} ,\frac{1}{a_{3}} ……\frac{1}{a_{n}}}
In this Page Harmonic Progression Formulas is given that is useful to Solve many Problems in different Competitive Examinations.
a_{n} = \mathbf{\frac{1}{(a + (n – 1)d)}}
where a_{n} = nth term,
\frac{1}{a}= the first term ,
d= common difference taken from AP,
n = number of terms in the sequence
Harmonic Mean is type of numerical average, which is calculated by dividing the number of observation by the reciprocal of each number in series.
If a, b are in HP, then there HM is
HM = \mathbf{\frac{n} {\frac{1}{a_{1}} + \frac{1}{a_{2}} ……\frac{1}{a_{n}}}}
Where, n = Total number of numbers or terms, a1, a2,…..an = Individual terms or individual values.
Harmonic Mean of two numbers a and b is \mathbf{\frac{2ab}{a+b}}
Harmonic Mean of three numbers a, b and c is \mathbf{\frac{3abc}{ab+bc+ca}}
Get PrepInsta Prime & get Access to all 200+ courses offered by PrepInsta in One Subscription
Question 1:The sum of the first n terms of a harmonic progression is given by (S_{n} = \frac{n^{2} + 4}{3n}). What is the common difference between the terms of this progression?
A) (\frac{1}{3})B) (\frac{2}{3})C) (\frac{3}{4})D) (\frac{4}{5})
Solution: A) (\frac{1}{3})The sum of the first n terms of a harmonic progression is given by (S_n = \frac{n}{a_1} = \frac{n}{\frac{1}{a}} = na), where a is the common difference. Comparing this with the given formula, we have (\frac{n^2 + 4}{3n} = na). Solving for a, we get (a = \frac{1}{3}).
Question 2:In a harmonic progression, the n_{th} term is (\frac{1}{n+2}). What is the sum of the first 10 terms of this progression?
A) (\frac{185}{99})B) (\frac{99}{185})C) (\frac{135}{70})D) (\frac{70}{135})
Solution: A) (\frac{185}{99})[/latex]The sum of the first n terms of a harmonic progression is given by (S_{n}= a_{1} (\frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{n}), where a_{1} is the first term. Substituting the given n_{th} term, we get (a_{1} = \frac{1}{n+2}). Then, (S_{10} = \frac{1}{n+2} (\frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{10}) = \frac{185}{99}).
Question 3:The sum of an infinite harmonic progression is (\frac{5}{3}). What is the sum of the squares of the terms in this progression?
A) (\frac{10}{3})B) (\frac{25}{9})C) (\frac{15}{4})D) (\frac{9}{5})
Solution: A) (\frac{10}{3})The sum of the squares of the terms in a harmonic progression is given by ( S_{squares} = a_{1}^{2}(\frac{1}{1^{2}} + \frac{1}{2^{2}} + …..) , where a_{1} is the first term. Given the sum of the infinite harmonic progression as (\frac{5}{3}), we can use the result (S_{\infty} = a_{1} (\frac{1}{1} + \frac{1}{2} + \ldots) = \frac{5}{3}) to find a_{1}. Then, S_{squares} = \frac{10}{3}).
Question 4:In a harmonic progression, the sum of the first 6 terms is 3 times the sum of their reciprocals. What is the sum of the first 12 terms of this progression?
A) 2B) 3C) 4D) 5
Solution:C) 4Let (S_{n}) be the sum of the first n terms and (S'_{n}) be the sum of the reciprocals of the first n terms. The given condition can be written as ((S_{6}) = (3S'_{6}) ). Using the formula for the sum of the first n terms of a harmonic progression, we have ((S_{6}) = \frac{6}{a})and ((S'_{6}) =\frac{6}{a}). Thus, (\frac{6}{a} = 3 * \frac{6}{a}), which implies (a = 3). Then, ((S_{12}) = \frac{12}{a} = 4).
Question 5:In a harmonic progression, the sum of the first 5 terms is 6, and the sum of their cubes is 405. What is the first term of this progression?
A) (\frac{1}{3})B) (\frac{1}{4})C) (\frac{1}{5})D) (\frac{1}{6})
Solution: A) (\frac{1}{3})Let a be the first term and d be the common difference of the harmonic progression. The sum of the first 5 terms is given by ((S_{5}) = 5a + 10d = 6). The sum of their cubes is given by (S_{cubes}) = a^{3} + (a+d)^{3} + (a+2d)^{3} + (a+3d)^{3} + (a+4d)^{3} = 405). Using the value of ((S_{5})), we can solve for d, and then using ((S_{cubes})), we can solve for a, which turns out to be (\frac{1}{3}).
Courses like AI/ML, Cloud Computing, Ethical Hacking, C, C++, Java, Python, DSA (All Languages), Competitive Coding (All Languages), TCS, Infosys, Wipro, Amazon, DBMS, SQL and others
Login/Signup to comment