import math
r=int(input(“Enter range”))
def prime(c):
i=2
k=0
while i<99999:
# Just checking prime or not
c1=0
for j in range (2,i+1):
if i%j==0:
c1+=1
if c1==1:#means the number is prime
k+=1
if k == c:# checking for the nth prime number
print(i)
break
i+=1
import java.util.Scanner;
import java.util.List;
import java.util.ArrayList;
class TCS9
{
static int pri = 2;
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
List fibo = new ArrayList();
List prime = new ArrayList();
int n = scan.nextInt();
for(int i = 1;i<=n;i++)
{
if(i%2==1)
{
if(fibo.size()<2)
fibo.add(1);
else
{
int a = (Integer)fibo.get(fibo.size()-1);
int b = (Integer)fibo.get(fibo.size()-2);
fibo.add(a+b);
}
}
else
{
boolean flag = false;
while(flag!=true){
if(Prime(pri)){
prime.add(pri);
flag = true;
}
pri++;
}
}
}
List l3 = new ArrayList();
int cnt1=0,cnt2=0;
for(int i = 1;i<=n;i++)
{
if(i%2==1)
l3.add(fibo.get(cnt1++));
else
l3.add(prime.get(cnt2++));
}
System.out.println(l3.get(n-1));
public class pblm1 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] P_series = Pr(n);
int[] F_series = fibo(n);
for (int i = 0; i < n / 2; i++) {
System.out.print(F_series[i] + " " + P_series[i] + " ");
}
sc.close();
}
public static int[] Pr(int m) {
int[] prime = new int[m / 2];
int pos = 0;
for (int i = 2; i <= m + 3; i++) {
int count = 0;
for (int j = 2; j < i; j++) {
if (i % j == 0) {
count++;
}
}
if (count == 0) {
prime[pos++] = i;
}
}
return prime;
}
public static int[] fibo(int x) {
int[] fb = new int[x / 2];
int first = 0, second = 1, next = 0;
for (int i = 0; i < fb.length; i++) {
if (i == 0) {
fb[i] = 1;
} else {
next = first + second;
first = second;
second = next;
def nextPrime(p):
while True:
p=p+1
if(checkPrime(p)):
return p
return p
def checkPrime(p):
for i in range(2,p):
if p%i==0:
return False
return True
a=1
b=1
z=0
p=0
res=0
n=int(input())
for i in range(n+1):
if i%2==0:
p=nextPrime(p)
else:
if i==1:
res=1
elif i==3:
res=1
else:
z=a+b
res=z
a=b
b=z
}
return true;
}
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int N=sc.nextInt();
int odd=0;
int p=1;
int a=1;
int b=1;
int z=0;
for(int i=1;i<N+1;i++) {
if(i%2==0) {
p=nextPrime(p);
#code in Python 3
def prime(n):
a=2
ct=1
flag=0
if n==1:
return a
else:
while ct!=n:
a+=1
for i in range(2,a,1):
if a%i==0:
flag=2
break
flag=1
if flag==1:
ct+=1
return a
def fibonacci(n):
a=1
b=1
if n==1:
return a
elif n==2:
return b
else:
for i in range(3,n+1,1):
a,b=b,a+b
return b
if __name__==”__main__”:
num=int(input())
if num%2==0:
print(prime(num/2))
else:
print(fibonacci((num//2)+1))
// In Java
import java.util.Scanner;
public class Prime{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int a,b,c;
int num =2;
int temp=0;
System.out.println(“Enter term”);
int n = sc.nextInt();
if(n%2!=0){
a = 1;
b=1;
c=1;
if(n == 1 || n==3){
System.out.println(a);
}
else{
for(int i=2;i<=n/2;i++){
c = a+b;
a=b;
b=c;
}
System.out.println(c);
}
}
else{
if(n==2){
System.out.println(num);
}
else{
for(int i=2;i<=n/2;i++){
temp =0;
num++;
for(int j=2;j<num;j++){
if(num%j==0){
num = num + 1;
j=2;
}
else{
temp=1;
}
}
}
if(temp==1){
System.out.println(num);
}
}
}
}
}
import math
r=int(input(“Enter range”))
def prime(c):
i=2
k=0
while i<99999:
# Just checking prime or not
c1=0
for j in range (2,i+1):
if i%j==0:
c1+=1
if c1==1:#means the number is prime
k+=1
if k == c:# checking for the nth prime number
print(i)
break
i+=1
def fibo(n):
n1, n2 = 1, 1
count = 1
while count < n:
nth = n1 + n2
n1 = n2
n2 = nth
count += 1
op = n1
return op
r1=math.ceil(r/2)
if(r%2==1):
print(fibo(r1))
else:
prime(r1)
import math
r=int(input(“Enter range”))
count1=3
n11, n21 = 1, 1
count2=3
n12, n22 = 2, 3
for i in range (1,r+1):
if i%2==0:
nterms = (i / 2)
if nterms == 1 or nterms == 2:
op=n11
else:
while count1 < nterms:
nth1 = n11 + n21
# update values
n11 = n21
n21 = nth1
count1 += 1
op=n11
elif i%2==1:
nterms =math.ceil(i / 2)
if nterms == 1 :
op=n12
elif nterms==2:
op=n22
else:
while count2 < nterms:
nth2 = n12 + n22
# update values
n12 = n22
n22 = nth2
count2 += 1
op=n12
print(op)
#include
int main(){
int i,j,n,f=0;
scanf(“%d”,&n);
int a=0,b=1,m=a+b,p=2;
for(i=1;i<=n;i++){
if(i%2==0){
//prime
for(int j=p;j<1000;j++){
for(int k=2;k<=j/2;k++){
if(j%k==0){
f=1;
break;
}
}
if(f==0){
printf("%d ",j);
p=j+1;
f=0;
break;
}
f=0;
}
}
else if(i%2!=0){
if(i==1){
printf("%d ",i);
continue;
}
//fib
m = a+b;
a=b;
b=m;
printf("%d ",m);
}
}
return 0;
}
n=int(input())
j=1
def prime(i):
no=[]
for k in range(2,9999):
for m in range(2,k):
if(k%m==0):
break
else:
no.append(k)
return no[int(i-1)]
def fib(j):
a=1
b=1
c=0
if(j==1 or j==2):
c=1
else:
for l in range(2,j):
c=a+b
a=b
b=c
return(c)
for i in range(1,n+1):
if(i%2==0):
num=prime(int(i/2))
#print(num)
else:
num= fib(j)
j+=1
#print(num)
print(num)
import java.util.Scanner;
import java.util.List;
import java.util.ArrayList;
class TCS9
{
static int pri = 2;
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
List fibo = new ArrayList();
List prime = new ArrayList();
int n = scan.nextInt();
for(int i = 1;i<=n;i++)
{
if(i%2==1)
{
if(fibo.size()<2)
fibo.add(1);
else
{
int a = (Integer)fibo.get(fibo.size()-1);
int b = (Integer)fibo.get(fibo.size()-2);
fibo.add(a+b);
}
}
else
{
boolean flag = false;
while(flag!=true){
if(Prime(pri)){
prime.add(pri);
flag = true;
}
pri++;
}
}
}
List l3 = new ArrayList();
int cnt1=0,cnt2=0;
for(int i = 1;i<=n;i++)
{
if(i%2==1)
l3.add(fibo.get(cnt1++));
else
l3.add(prime.get(cnt2++));
}
System.out.println(l3.get(n-1));
}
static boolean Prime(int n)
{
for(int i = 2;i*i<=n;i++)
if(n%i==0)
return false;
return true;
}
}
Java solution ===>
import java.util.Scanner;
public class pblm1 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] P_series = Pr(n);
int[] F_series = fibo(n);
for (int i = 0; i < n / 2; i++) {
System.out.print(F_series[i] + " " + P_series[i] + " ");
}
sc.close();
}
public static int[] Pr(int m) {
int[] prime = new int[m / 2];
int pos = 0;
for (int i = 2; i <= m + 3; i++) {
int count = 0;
for (int j = 2; j < i; j++) {
if (i % j == 0) {
count++;
}
}
if (count == 0) {
prime[pos++] = i;
}
}
return prime;
}
public static int[] fibo(int x) {
int[] fb = new int[x / 2];
int first = 0, second = 1, next = 0;
for (int i = 0; i < fb.length; i++) {
if (i == 0) {
fb[i] = 1;
} else {
next = first + second;
first = second;
second = next;
fb[i] = second;
}
}
return fb;
}
}
#include
int main ()
{
int n,max=80,j=0;
scanf(“%d”,&n);
if(n%2==0){
n=n/2;
for(int i=2;i<=max;i++){
if(i==2 || i==3)
j++;
else if (i%2==0 || i%3==0)
continue;
else
j++;
if(j==n){
printf("%d",i);
return 0;
}
}
}
else{
n=(n/2)+1;
int a=1,b=1,c;
if(n==1 || n==2){
printf("1");
return 0;
}
for(int i=3;i<=n;i++){
c=a+b;
a=b;
b=c;
}
printf("%d",c);
}
return 0;
}
def nextPrime(p):
while True:
p=p+1
if(checkPrime(p)):
return p
return p
def checkPrime(p):
for i in range(2,p):
if p%i==0:
return False
return True
a=1
b=1
z=0
p=0
res=0
n=int(input())
for i in range(n+1):
if i%2==0:
p=nextPrime(p)
else:
if i==1:
res=1
elif i==3:
res=1
else:
z=a+b
res=z
a=b
b=z
if n%2==0:
print(p)
else:
print(res)
package tara;
import java.util.*;
public class tcs1 {
static int nextPrime(int p) {
boolean is_prime=false;
while(true) {
p=p+1;
is_prime=checkPrime(p);
if(is_prime==true) {
break;
}
}
return p;
}
static boolean checkPrime(int p) {
if(p==2) {
return true;
}
for(int i=2;i<p;i++) {
if(p%i==0) {
return false;
}
}
return true;
}
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int N=sc.nextInt();
int odd=0;
int p=1;
int a=1;
int b=1;
int z=0;
for(int i=1;i<N+1;i++) {
if(i%2==0) {
p=nextPrime(p);
}else {
if(i==1) {
odd=1;
}else {
if(i==3) {
odd=1;
}else {
z=a+b;
odd=z;
a=b;
b=z;
}
}
}
}
if(N%2!=0) {
System.out.println(odd);
}else {
System.out.println(p);
}
}
}
#include
#include
#include
using namespace std;
void prime(int a)
{
int i,count;
count=0;
for(i=0;i<=a;i++)
{ if(a%i==0)
count=count+1;
}
if(count==2)
cout<<a;
}
void fab(int a)
{
int f=0,b=1,next;
for(int i=2;i<=a;i++)
{
next=f+b;
f=b;
b=next;
}
cout<<a;
}
int main()
{
int n;
cout<>n;
if(n%2==1)
{
fab(n/2);
}
else
{
prime((n/2)+1);
}
return 0;
}
#code in Python 3
def prime(n):
a=2
ct=1
flag=0
if n==1:
return a
else:
while ct!=n:
a+=1
for i in range(2,a,1):
if a%i==0:
flag=2
break
flag=1
if flag==1:
ct+=1
return a
def fibonacci(n):
a=1
b=1
if n==1:
return a
elif n==2:
return b
else:
for i in range(3,n+1,1):
a,b=b,a+b
return b
if __name__==”__main__”:
num=int(input())
if num%2==0:
print(prime(num/2))
else:
print(fibonacci((num//2)+1))